
www.manaraa.com

Weighted Distributed Systems and Their Logics

Benedikt Bollig1 and Ingmar Meinecke2

1 LSV, CNRS UMR 8643 & ENS de Cachan
61 Av. du Pŕesident Wilson, F-94235 Cachan Cedex, France

bollig@lsv.ens-cachan.fr
2 Institut für Informatik, Universiẗat Leipzig
Johannisgasse 26, D-04103 Leipzig, Germany

meinecke@informatik.uni-leipzig.de

Abstract. We provide a model of weighted distributed systems and give alogical
characterization thereof. Distributed systems are represented as weighted asyn-
chronous cellular automata. Running over directed acyclicgraphs, Mazurkiewicz
traces, or (lossy) message sequence charts, they allow for modeling several com-
munication paradigms in a unifying framework, among them probabilistic shared-
variable and probabilistic lossy-channel systems. We showthat any such system
can be described by a weighted existential MSO formula and, vice versa, any
formula gives rise to a weighted asynchronous cellular automaton.

1 Introduction

Classical automata theory has become an indispensable toolin many modern areas of
computer science, supporting, for example, programming languages and specification
and verification techniques. In some applications, automata need to cope with quantita-
tive phenomena. Then, taking a transition in an automaton isaccompanied by measuring
its cost or weight. For example, a system might provide a counter tracking the number of
occurrences of a given pattern; or its behavior might dependon probability laws so that
the outcome of a transition is generally uncertain and depends on a probability distri-
bution. Actually, automata with weights enjoy manifold applications in numerous areas
such as speech recognition [18], probabilistic systems [12, 1], and image compression
[4].

Formally, the behavior of a weighted automaton is no longer characterized by the
pure existence of an accepting run. Rather, a weighted automaton comes up with a
formal power seriesassigning to any possible execution sequence a value from a semi-
ring. More precisely, the values collected along an automaton execution are multiplied,
whereas nondeterminism is resolved by summation therewithgeneralizing the two op-
erations of the two-valued Boolean algebra, cf. [13].

For a long time, the correspondence of automata and logic hasbeen a captivating
research direction in computer science. The probably most famous result goes back to
Büchi and Elgot, who discovered a precise correspondence between finite automata and
the logical formalism of monadic second-order (MSO) formulas [3, 11]. In particular,
any system description formalized in the MSO language comesup with an implementa-
tion in terms of a finite automaton. Concerning weighted automata, most results estab-
lish Kleene-like theorems stating that a formal power series is described by a weighted

www.manaraa.com

automaton iff it is rational [21, 6, 15]. A logical characterization of weighted automata
has been achieved only recently: Droste and Gastin opened a new research direction by
providing a weighted MSO logic to define formal power series over words [7]. Their
achievements have been extended, among others, to automataon infinite words [9],
trees [10], pictures [16], and traces [17].

In this paper, we deal with a model for weighted distributed systems that unifies
many communication paradigms such as shared-memory systems, (lossy) channel sys-
tems, etc. It is constituted by asynchronous cellular automata (ACAs) [8] running on
directed acyclic graphs (dags) without auto-concurrency.Unlike finite automata, which
process their input words in a sequential fashion, ACAs are appropriate to concurrent
executions. Accordingly, the assignment of weights does not depend on the order in
which independent events are executed. ACAs have already been equipped with weights
by Kuske to recognize formal power series over traces [15]. Generalizing results by
Ochmánski [19] and Droste and Gastin [6], he showed that a series isregular iff it is
recognized by some weighted ACA. Actually, we provide an even more general model
subsuming Kuske’s automata. Running over dags rather than traces, our weighted ACA
can cope with many common domains for concurrency, not only traces but also message
sequence charts which play a prominent role in telecommunication. As we will dis-
cuss in the course of this paper, the latter domain allows an embedding of probabilistic
lossy-channel systems. Our main result states that weighted ACAs recognize precisely
the formal power series that are definable in an existential fragment of a weighted MSO
logic over dags. This result cannot be obtained by a translation of the word setting as
it was done for traces [17]. On the other hand, a lot of technical difficulties arise in
our setting compared to this of words. Especially, we have toprove an unambiguity re-
sult for first-order definable languages before establishing the main theorem. For words
such an unambiguity result is for free since deterministic devices suffice to recognize
all regular languages. Moreover, the construction of a weighted formula from a given
weighted asynchronous cellular automaton is much more tricky than for words.

The paper is structured as follows: in Section 2, we introduce our notion of a dag
over a distributed alphabet. Hereby, a distributed alphabet constitutes the system archi-
tecture by assigning to any process its supply of actions. Section 3 introduces ACAs
first in their classical, then in their weighted form. The behavior of a weighted ACA
will be described in terms of a formal power series over (a subset of) the class of dags.
Having introduced weighted MSO logic over dags in Section 4,Sections 5 and 6 derive
our main result, the precise correspondence between weighted ACAs and the existential
fragment of weighted MSO logic.

2 Dags over Distributed Alphabets

We fix a nonempty finite setAg of agents, a distributed alphabet̃Σ, which is a tuple
(Σi)i∈Ag of (not necessarily disjoint) alphabetsΣi, and an alphabetC. Elements from
Σi are understood to beactions that are performed by agenti. Let Σ =

⋃
i∈Ag Σi

denote the set of all the actions. The actions will label the nodes of a graph, which
we will later refer to asevents. Elements fromC label edges of a graph to provide
a kind of control information. For example, they might reflect the type of a message

2

www.manaraa.com

represented by an edge between communicating events. A (directed)graphover(Σ,C)
is a structure(V, {⊳ℓ}ℓ∈C , λ) whereV is its finite set ofnodes, ⊳ℓ ⊆ V ×V are disjoint
binary relations onV , andλ : V → Σ is thelabeling function. We call⊳ :=

⋃
ℓ∈C ⊳ℓ

the edge relationand set≤ = ⊳∗ and< = ⊳+. For u, v ∈ V , we define thecover
relation u ⋖ v of ≤ by u < v and, for anyw ∈ V , u < w ≤ v impliesw = v. A
directed acyclic graph(dag) over(Σ,C) is a graph(V, {⊳ℓ}ℓ∈C , λ) over(Σ,C) such
that ⊳ is irreflexive and≤ is a partial order. The set of all those dags is denoted byDAG(Σ,C). For a ∈ Σ, we put loc(a) := {i ∈ Ag | a ∈ Σi}. Then,a andb are
independent, writing a I eΣ

b, if loc(a) ∩ loc(b) = Ø. Otherwise, we saya andb are
dependent, writing a D eΣ

b.
We now introduce the models representing the behavior of a system of communi-

cating agents. In doing so, we combine and extend the models from [8, 14, 2].

Definition 2.1. A (Σ̃, C)-dagis a dag(V, {⊳ℓ}ℓ∈C , λ) ∈ DAG(Σ,C) where

– for anyi ∈ Ag , λ−1(Σi) is totally ordered by≤ and
– for anyℓ ∈ C and(u, v), (u′, v′) ∈ ⊳ℓ with λ(u)D eΣ

λ(u′) andλ(v)D eΣ
λ(v′), we

haveu ≤ u′ iff v ≤ v′.

The set of all(Σ̃, C)-dags is denoted byDAG(Σ̃, C).

The first condition reflects that a single agent is consideredto operate sequentially.
Especially, there is no auto-concurrency. The second condition ensures a FIFO architec-
ture of communicating systems. Messages(u, v) and(u′, v′) of the same type between
the same agents are received in the same order as they have been sent. Because of the
FIFO-architecture and the absence of auto-concurrency, weconclude that, in a(Σ̃, C)-
dag(V, {⊳ℓ}ℓ∈C , λ), for anyu ∈ V , ℓ ∈ C, anda ∈ Σ, there is at most one vertex
v ∈ V such that bothu ⊳ℓ v (or v ⊳ℓ u) andλ(v) = a.3 If C is a singleton, we actually
deal with structures(V,⊳, λ) and we speak of̃Σ-dags.

The automaton model as introduced in the next section monitors for every node
u ∈ V of a (Σ̃, C)-dag(V, {⊳ℓ}ℓ∈C , λ) the direct neighborhood ofu. Therefore, we
introduce the following abbreviations: Foru ∈ V , we denote by Read(u) := {(a, ℓ) ∈
Σ × C | ∃v ∈ V : v ⊳ℓ u ∧ λ(v) = a} the read domainof u and, given(a, ℓ) ∈
Read(u), let (a, ℓ)-pred(u) be the unique vertexv such that bothv ⊳ℓ u andλ(v) = a.
Similarly, let Write(u) := {(a, ℓ) ∈ Σ × C | ∃v ∈ V : u ⊳ℓ v ∧ λ(v) = a} be the
write domainof u and, for(a, ℓ) ∈ Write(u), (a, ℓ)-succ(u) denote the unique vertex
v such that bothu ⊳ℓ v andλ(v) = a. For i ∈ Ag andVi = {u ∈ V | λ(u) ∈ Σi},
sequential progress of an agenti ∈ Ag is reflected by⊳i := ⊳ ∩ (Vi × Vi) and the
total order≤i := ≤ ∩ (Vi × Vi) (do not mistake relation⊳i of agenti for edge relation
⊳ℓ for ℓ ∈ C). Foru ∈ V andi ∈ Ag , u isΣi-maximalif u ∈ Vi and there is nov ∈ Vi

such thatu < v. Obviously, there is at most oneΣi-maximal vertex.
Dags over distributed alphabets subsume popular domains ofconcurrency:

Example 2.1 (Mazurkiewicz Traces [5]).We consider distributed systems where an ac-
tion a ∈ Σ is executed simultaneously by any componenti ∈ loc(a). The behavior of

3 As a consequence, the underlying graph has bounded degree. This property is essential in
establishing the coincidence between recognizability andlogical definability [2].

3

www.manaraa.com

such a “shared-memory” system is described naturally by a set of traces. Commonly,
traces are defined as congruence classes of words or as dependence graphs. In our set-
ting, we model a trace as the union of the Hasse diagrams of thetotal orders of the
different agents. Moreover, the labeling of an edge betweentwo nodesu andv provides
information about which agents executeu andv consecutively. In detail, atraceover
Σ̃ is a dag(V, {⊳ℓ}ℓ∈2Ag , λ) from DAG(Σ̃, 2Ag) such that both⊳ =

⋃
i∈Ag ⋖i and,

for any (u, v) ∈ ⊳ and ℓ ∈ 2Ag , u ⊳ℓ v iff ℓ = {i ∈ Ag | u ⋖i v} (recall that
⋖i is the cover relation of≤i). This modeling of a trace will turn out to be tremen-
dously helpful when simulating shared-memory systems in terms of asynchronous cel-
lular automata, as the edge relation will be used to access, for any eventu and any agent
i ∈ loc(λ(u)), the current state ofi ∈ Ag right before executingu. A sample trace over
Σ̃ = ({a, b, c}, {a, b, d}, {a, b}) (with Ag = {1, 2, 3}) is depicted in Fig. 1(a).

Example 2.2 ((Lossy) Message Sequence Charts).Another communication paradigm
is that of channel systems: several componentsi ∈ Ag communicate by sending and
receiving messages through channels. So letCh = (Ag × Ag) \ idAg be the set of
channels. To model the behavior of such a system, we need to fixsupplies of send and
receive actions: fori ∈ Ag , letΓi denote{i!j | (i, j) ∈ Ch} ∪ {i?j | (i, j) ∈ Ch}, the
set of(communication) actionsof agenti. Action i!j reads as “i sends a message toj”.
Accordingly,j?i is the complementary receive action. LetΓ̃ be the distributed alphabet
(Γi)i∈Ag . A message sequence chart(MSC) overAg is a Γ̃ -dag(V,⊳, λ) such that,
for any i ∈ Ag , ⊳i is the cover relation of≤i, for any(u, v) ∈ ⊳ with λ(u) IeΓ

λ(v),
λ(u) = i!j andλ(v) = j?i for somei, j, and, for anyu ∈ V , there isv ∈ V satisfying
bothλ(u) IeΓ

λ(v) and eitheru ⊳ v orv ⊳ u. Observe that, due to the general definition

of a Γ̃ -dag, we deal with a model for FIFO communication. If we do notrequire a send
event to be followed by a corresponding receive event, we deal with a lossyMSC. More
precisely, the last condition in the definition of an MSC is weakened as follows: for any
v ∈ V with λ(v) a receive action, there isu ∈ V satisfyingλ(u) IeΓ

λ(v) andu ⊳ v.
Figure 1(b) depicts an MSC over{1, 2}, whereas the structure from Fig. 1(c) is not an
MSC but a lossy MSC.

{1}

{2}

{2}

{1, 3}

{2}

c

a

d

d

b

(a)

1!2

1?2

1!2

2!1

2?1

2?1

(b)

1!2

1!2

1!2

2?1

2?1

(c)

Fig. 1. A trace over({a, b, c}, {a, b, d}, {a, b}), an MSC over{1, 2}, and a lossy MSC over
{1, 2} that is not an MSC

4

www.manaraa.com

3 Weighted Asynchronous Cellular Automata

First we provide the unweighted model of an asynchronous cellular automaton, similar
to the one proposed in [2]. Actually, we deal with asynchronous cellular automatawith
types(ACATs) over(Σ̃, C)-dags, which have limited access to the future. To express
“communication requests”, a type function associates withany actiona and any stateq
the set of actions that henceforth “communicate” witha, provided executinga results in
stateq. Regarding lossy MSCs, for example, we might require an event labeled with a
send action1!2 to be followed by the suitable receive event, which is then labeled with
the communication action2?1. For some classes the expressive power of ACAs with
and without types coincide. But in general, omitting the type function severely restricts
the expressive power of ACATs [2].

Definition 3.1. Anasynchronous cellular automaton with types(ACAT) over(Σ̃, C) is
a structureA = (Q,∆, T, F) where

– Q is the nonempty finite set ofstates,
– ∆ ⊆ Trans(eΣ,C)(Q) := (Q ·∪ {−})Σ×C ×Σ ×Q is the set oftransitions,

– T : (Σ ×Q) → 2Σ×C is thetype function, and
– F ⊆ (Q ·∪ {ı})Ag is the set of globalfinal states.

We often write(q, a, q) ∈ ∆ with q ∈ (Q ·∪ {−})Σ×C asq −→ (a, q). Note that
q[(b, ℓ)] = − means that there is no(b, ℓ)-predecessor. Hence, we will sometimes write
q as an element fromP(Σ × C × Q). The idea of a run of an asynchronous cellular
automatonA on a(Σ̃, C)-dagD = (V, {⊳ℓ}ℓ∈C , λ) is an additional labeling of the
nodesu ∈ V with statesq ∈ Q such that the local neighborhoods match the transitions,
after executingD the system is in a final state, and the requests of the type function are
satisfied.

First, let us consider the following example:A = (Q,∆, T, F) running on lossy
MSCs over agents{1, 2}, cf. Example 2.2. We putQ = {q0, q1}. Now, the follow-
ing transitions are in∆: Ø → (1!2, q0), (1!2, q0) → (1!2, q1), (1!2, q1) → (1!2, q0),

q0

q1

q0

q0

q1

1!2

1!2

1!2

2?1

2?1

(1!2, q0) → (2?1, q0), {(1!2, q0), (2?1, q0)} → (2?1, q1),
and {(1!2, q1), (2?1, q0)} → (2?1, q1). Moreover, we put
T (1!2, q0) = {2?1} andF = {(1, q0), (2, q1)}. Then the
picture on the left hand side depicts a successful run ofA on
the lossy MSC from Figure 1(c). For every node, the node
itself together with its read domain is covered by a transi-
tion. Furthermore, agent1 stops inq0 and agent2 in q1. Last
but not least, every send event1!2 in stateq0 is followed by
a receive event2?1 as imposed by the type function.

To be precise, letρ : V → Q. We write(D, ρ) to denote the dag(V, {⊳ℓ}ℓ∈C , (λ, ρ))
over(Σ×Q,C). For(D, ρ), let trans(D,ρ) : V → Trans(eΣ,C)(Q) describe the down-
ward local neighborhood, i.e., for anyu ∈ V let trans(D,ρ)(u) = (q, λ(u), ρ(u))
where, for any(b, ℓ) ∈ Σ × C,

q[(b, ℓ)] =

{
− if (b, ℓ) 6∈ Read(u),
ρ((b, ℓ)-pred(u)) if (b, ℓ) ∈ Read(u).

5

www.manaraa.com

Moreover, we definefinal (D,ρ) ∈ (Q ·∪ {ı})Ag by final (D,ρ)[i] = ı for any agent
i ∈ Ag with Vi = Ø. Otherwise,final (D,ρ)[i] = ρ(u) whereu is Σi-maximal inV .
Thus, if the system starts in the global state(ı)i∈Ag and executesD, then it ends up in
the global statefinal (D,ρ). Now arun of A on D is a mappingρ : V → Q such that,
for anyu ∈ V , trans(D,ρ)(u) ∈ ∆. Moreover,ρ is acceptingif both final (D,ρ) ∈ F
and, for anyu ∈ V , we haveT (λ(u), ρ(u)) ⊆ Write(u). The intuition behind the latter
condition is that we require Write(u) to contain at least the communication requests
imposed by the type function of the automaton. The languageL(A) is the set of allD
such that there is at least one accepting run ofA on D. We callA unambiguousif, for
any(Σ̃, C)-dagD and any two accepting runsρ, ρ′ of A onD, we haveρ = ρ′.

A setL ⊆ DAG(Σ̃, C) is calledrecognizableif L(A) = L for some ACATA over
(Σ̃, C). Similarly, we say thatL is unambiguously recognizableif L(A) = L for some
unambiguous ACATA over(Σ̃, C).

A weighted automaton is no longer characterized by the set ofaccepted executions.
Rather, it assigns to any possible execution a value from a semiring. A semiring is a
structureK = (K,⊕, ◦, 0, 1) with two binary operations, addition and multiplication,
and constants0 and1, such that(K,⊕, 0) is a commutative monoid,(K, ◦, 1) is a
monoid, multiplication distributes over addition, and0 ◦ k = k ◦ 0 for anyk ∈ K.
We sayK is commutativeif the multiplication◦ is commutative. Sample semirings are
(IN,+, ·, 0, 1), the 2-valued Boolean algebraB = ({0, 1},∨,∧, 0, 1), and the proba-
bilistic semiringP = ([0, 1],max, ·, 0, 1). Throughout this paper, we fix a commutative
semiringK = (K,⊕, ◦, 0, 1). Commutativity is needed for a proper definition of au-
tomata behavior and several closure properties.

Definition 3.2. A weightedasynchronous cellular automaton with types(wACAT) overK and(Σ̃, C) is a structure(Q,µ, T, γ) where

– Q is the nonempty finite set ofstates,
– µ : Trans(eΣ,C)(Q) → K is thetransition weight function,

– T : (Σ ×Q) → 2Σ×C is thetype function, and
– γ : (Q ·∪ {ı})Ag → K is thefinal weight function.

In a wACAT, the values of a semiring that are collected along an execution of the au-
tomaton are multiplied, whereas nondeterminism is resolved by summation. The behav-
ior of such an automaton will be a functionS : DAG(Σ̃, C) → K, also called aformal
power series. The collection of all these functions is denoted byK〈〈DAG(Σ̃, C)〉〉.

More precisely: letD = (V, {⊳ℓ}ℓ∈C , λ) be a(Σ̃, C)-dag. In the weighted setting,
every mappingρ : V → Q is referred to as arun. Theweightof ρ is the product

weight(D, ρ) :=
(∏

u∈V

µ(trans(D,ρ)(u))
)
◦ γ(final (D,ρ)) .

We callρ successfulif T (λ(u), ρ(u)) ⊆ Write(u) for anyu ∈ V . We thus can assign
to A a formal power series‖A‖ ∈ K〈〈DAG(Σ̃, C)〉〉 by

(‖A‖,D) :=
⊕

ρ:V →Q

ρ successful

weight(D, ρ)

6

www.manaraa.com

for anyD = (V, {⊳ℓ}ℓ∈C , λ) ∈ DAG(Σ̃, C). Note that, in the context of formal power
series,(‖A‖,D) is a common notation for‖A‖(D).

ForL ⊆ DAG(Σ̃, C), thecharacteristic series1L : DAG(Σ̃, C) → K is given by
(1L,D) = 1 if D ∈ L and(1L,D) = 0 if D 6∈ L. We say thatS ∈ K〈〈DAG(Σ̃, C)〉〉 is
recognizableif there is a wACATA with ‖A‖ = S.

Example 3.1 (Probabilistic Lossy-Channel Systems [20]).A probabilistic lossy-channel
system is a tupleP = ((Qi, δi)i∈Ag , q

in , (rij(q))(i,j)∈Ch,q∈Qi
): with any agenti, we

associate a sequential process, which is composed of a finitestate spaceQi and a tran-
sition relationδi ⊆ Qi × Γi × Qi. Recall thatΓi comprises the set of communication
actions executed by agenti, i.e., actions of the formi!j or i?j with i 6= j. We shall
assumeδi to be deterministic, i.e., for anyq ∈ Qi andσ ∈ Γi, there is at most one
q′ ∈ Qi such that(q, σ, q′) ∈ δi. Moreover, the system is equipped with a global initial
stateqin ∈

∏
i∈Ag Qi. There is an unreliable channel in between any two agentsi andj

with i 6= j, i.e., depending on a stateq ∈ Qi in which a message is sent, a channel(i, j)
has a reliabilityrij(q) ∈ [0, 1]. Thus, the message arrives at agentj with probability
rij(q) and is lost with probability1 − rij(q).

We will give the probabilistic lossy-channel systemP a semantics in terms of a
wACAT AP = (Q,µ, T, γ) overP = ([0, 1],max, ·, 0, 1) andΓ̃ reading lossy MSCs
whereQ = (

⋃
i∈Ag Qi) × {success, failure, rec}. Here, we give just the idea of the

construction. Roughly speaking, we shift the reliabilities of the channels to the sequen-
tial processes. Then a state with second componentsuccess is assigned to a send event
that succeeds in delivering a message, which is guaranteed by the type function, i.e.,
T maps a pair of the form(i!j, (q, success)) to {j?i} and any other pair to the empty
set. Such asuccess-state is entered with the probability that the transmission succeeds.
In contrast, a send event that is equipped with a state that carries the attributefailure is
entered with the probability that the transmission fails. Thus, it cannot be followed by
a corresponding receive. Any other event will carryrec to indicate that we deal with a
receive event. As we do not explicitly deal with final states,γ maps any possible final
configuration to1. For a lossy MSCM, (‖AP ‖,M) ∈ [0, 1] might now be interpreted
to be the probability of acceptance ofM byP.

Example 3.2 (Probabilistic Asynchronous Automata [12]).The model of asynchronous
automata [22] over Mazurkiewicz traces represents shared-memory systems rather than
channel systems. In an asynchronous automaton running on traces, any actiona has to
be executed simultaneously by any componenti ∈ loc(a). Probabilistic asynchronous
automata have been introduced by Jesi, Pighizzini, and Sabadini [12]. In a probabilistic
asynchronous automaton, the outcome of a transition depends on a probability distri-
bution on the set of global states of the system. Formally, aprobabilistic asynchronous
automatonoverΣ̃ is a structureB = ((Si)i∈Ag , (Pa)a∈Σ , q0, η) where

– for eachi ∈ Ag , Si is a nonempty finite set of (i-)local states,
– for eacha ∈ Σ, Pa is a mappingSa × Sa → [0, 1] such that, for anys ∈ Sa,

Pa(s, .) is a probability distribution onSa whereSa := {s ∈
∏

i∈Ag(Si ·∪ {∗}) |
for anyi ∈ Ag , s[i] = ∗ iff i 6∈ loc(a)},

– q0 ∈
∏

i∈Ag Si is theglobal initial state, and
– η :

∏
i∈Ag Si → {0, 1} assigns a weight to any possible final configuration.

7

www.manaraa.com

A probability distributionPa(s) reflects that, in a global configuration from
∏

i∈Ag Si

that coincides withs with respect to the locations fromloc(a), executing ana will alter
at most the local statess of agents fromloc(a).

We provide the reader with a rather intuitive semantics ofB and refer to [12] for
details. Roughly speaking,B assigns to any trace a probability of acceptance. To de-
termine the acceptance probability of a traceT = (V, {⊳ℓ}ℓ∈2Ag , λ) over Σ̃ (see Ex-
ample 2.1),B will fix an arbitrary linear extensionw = (V,≤′, λ) of T, i.e.,≤′ is a
total-order relation containing≤. As usual,w can be seen as a worda1 . . . an ∈ Σ∗

with n = |V |. Then, starting in the global initial stateq0, B readsw letter by letter and
assigns to any positionk = 1, . . . , n a global stateqk ∈

∏
i∈Ag Si such that going from

qk−1 to qk changes at most the components fromloc(ak), i.e.,qk−1[i] = qk[i] for any
i 6∈ loc(ak). A step fromqk−1 to qk uniquely determines a pair(sk−1, sk) ∈ Sak

×Sak

with sk−1[i] = sk[i] = ∗ for anyi 6∈ loc(ak) andsk−1[i] = qk−1[i] andsk[i] = qk[i]
for any otheri. The sequenceq0, . . . , qn might be called a run ofB onw. The weight
of this particular run is the product

∏
k=1,...,n Pak

(sk−1, s
′
k) · η(qn) (if n = 0, then

we set its weight to beη(q0)). Summing up the weights of all possible runs ofB onw
determines the valuePB(T) ∈ [0, 1], the probability thatT is accepted byB.

Lemma 3.1. There is a wACATA = (Q,µ, T, γ) over (R≥0,+, ·, 0, 1) and (Σ̃, 2Ag)
such that|Q| ≤ |Σ| × |

∏
i∈Ag Si| and(‖A‖,T) = PB(T) for any traceT.4

Proof. LetQ =
⋃

a∈Σ Sa andT (a, s) = Ø for any(a, s) ∈ Σ ×Q.

– Supposet = {((a1, s1), ℓ1), . . . , ((an, sn), ℓn)} −→ (a, s) ∈ Trans(eΣ,2Ag)(Q). If

sk ∈ Sak
, k = 1, . . . , n, s ∈ Sa, and the setsℓk ∈ 2Ag are pairwise disjoint, then

µ(t) is set to bePa(s′, s) wheres′ is determined as follows: for anyi ∈ loc(a),
s′[i] = q0[i] if i 6∈

⋃
k=1,...,n ℓk, and, otherwise,s′[i] = sk[i] for the uniquek ∈

{1, . . . , n} with i ∈ ℓk. Any other transition is mapped to0.
– Supposeq ∈ (Q ·∪ {ı})Ag . If there isq′ ∈

∏
i∈Ag Si such that, for anyi ∈ Ag ,

q[i] = ı impliesq′[i] = q0[i] andq[i] ∈ Q impliesq′[i] = q[i][i], then setγ(q) to
beη(q′). Otherwise, setγ(q) to be0. �

Note that (weighted) ACATs relative to traces can actually do without types. By
Lemma 3.1 and Theorem 4.2, we will give, as a byproduct, a weighted formula defining
the behavior of a probabilistic asynchronous automatonB.

We collect some closure properties of recognizable series needed to show that de-
finable series are recognizable. LetS, S′ ∈ K〈〈DAG(Σ̃, C)〉〉. Then, we definek ◦ S for
k ∈ K, S+S′, andS⊙S′ by (k ◦S,D) = k ◦ (S,D), (S+S′,D) = (S,D)⊕ (S′,D),
and(S ⊙ S′,D) = (S,D) ◦ (S′,D) for anyD ∈ DAG(Σ̃, C).

Proposition 3.1. LetS, S′ : DAG(Σ̃, C) → K be recognizable andk ∈ K. Then,k ◦S,
S + S′, andS ⊙ S′ are recognizable.

4 Note that we calculate values in the interval[0, 1] only. But unfortunately,([0, 1], +, ·, 0, 1) is
not a semiring. Therefore, we turn to(R≥0, +, ·, 0, 1).

8

www.manaraa.com

Now letΣi, Γi be arbitrary alphabets fori ∈ Ag with Σ =
⋃

i∈Ag Σi andΓ =⋃
i∈Ag Γi. Moreover, letπv : Σ → Γ such thatπv(Σi) ⊆ Γi for all i ∈ Ag and

(a, b) ∈ D eΣ
iff (πv(a), πv(b)) ∈ DeΓ

. Then, we callπ : DAG(Σ̃, C) → DAG(Γ̃ , C)

with π(D) = (V, {⊳l}l∈C , πv◦λ) for D = (V, {⊳l}l∈C , λ) ∈ DAG(Σ̃, C) aprojection
fromDAG(Σ̃, C) toDAG(Γ̃ , C). Note thatπ(D) is indeed a(Γ̃ , C)-dag because of the
properties ofπv. For S ∈ K〈〈DAG(Σ̃, C)〉〉, let π(S) be the series defined for every
D′ ∈ DAG(Γ̃ , C) by (π(S),D′) =

⊕
D∈π−1(D′)(S,D).

Proposition 3.2. Let S ∈ K〈〈DAG(Σ̃, C)〉〉 andπ : DAG(Σ̃, C) → DAG(Γ̃ , C) be a
projection. IfS is recognizable, thenπ(S) ∈ K〈〈DAG(Γ̃ , C)〉〉 is recognizable.

Proposition 3.3. Let L ⊆ DAG(Σ̃, C) be an unambiguously recognizable language.
Then, the characteristic series1L overK is recognizable.

4 Weighted Monadic Second-Order Logic

We fix setsVar = {x, y, . . .} of first-orderandVAR = {X,Y, . . .} of second-order
variables. Still, we assume the semiringK being commutative.

Definition 4.1. The setwMSO(K, (Σ̃, C)) of weighted monadic second-order (wMSO)
formulas overK and(Σ̃, C) is given by (letk ∈ K, a ∈ Σ, andℓ ∈ C):

ϕ ::=k | λ(x) = a | ¬(λ(x) = a) | x ⊳ℓ y | ¬(x ⊳ℓ y) | x = y | ¬(x = y) |

x ∈ X | ¬(x ∈ X) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

The formulask, λ(x) = a, x ⊳ℓ y, x = y andx ∈ X are calledatomic. Negation
of k has no reasonable semantics for general semirings. Thus, toobtain an intuitive
interpretation of negation in terms of0 and1, it is pushed to the atomic level, omittingk.
In exchange, we have to enrich the syntax by conjunction and universal quantification,
cf. [7]. Let Free(ϕ) be the set of free variables ofϕ andV ∈ 2Var∪VAR a finite set of
variables. We say thatD = (V, {⊳ℓ}ℓ∈C , (λ, ρ)) with ρ : V → {0, 1}V is valid if, for
any first-order variablex ∈ V , there is a unique nodeu ∈ V such thatρ(u)[x] = 1.
In that case,ρ(x) shall refer tou. Givenx ∈ V andu ∈ V , we define theupdate
ρ[x/u] = ρ′ : V → {0, 1}V such thatρ′(u)[x] = 1, ρ′(v)[x] = 0 for anyv ∈ V \ {u},
andρ′(v)[x] = ρ(v)[x] for anyv ∈ V andx ∈ V \ {x}. Similarly, ρ[X/V ′] is defined
for X ∈ V andV ′ ⊆ V .

Note that, given a setV of variables, (weighted) ACATs can be extended to run
on dags over(Σ × {0, 1}V , C): We define a distributed alphabet̃ΣV = (Σ̃V

i)i∈Ag by
Σ̃V

i = Σi × {0, 1}V .

Definition 4.2. Supposeϕ ∈ wMSO(K, (Σ̃, C)) and supposeV ∈ 2Var∪VAR is finite
with Free(ϕ) ⊆ V . The semantics ofϕ wrt. V is a seriesJϕKV ∈ K〈〈DAG(Σ̃V , C)〉〉,
given as follows: ifD = (V, {⊳ℓ}ℓ∈C , (λ, ρ)) ∈ DAG(Σ̃V , C) is not valid, we set
JϕKV(D) = 0. Otherwise,JϕKV(D) is determined inductively as shown in Table 1.

9

www.manaraa.com

JkKV(D) = k

Jλ(x) = aKV(D) =

1 if λ(ρ(x)) = a0 otherwise

Jx ⊳ℓ yKV(D) =

1 if ρ(x) ⊳ℓ ρ(y)0 otherwise

Jx = yKV(D) =

1 if ρ(x) = ρ(y)0 otherwise

Jx ∈ XKV(D) =

1 if ρ(x) ∈ ρ(X)0 otherwise

J¬ϕKV(D) =

1 if JϕKV(D) = 00 if JϕKV(D) = 1

Jϕ1 ∨ ϕ2KV(D) = Jϕ1KV(D) ⊕ Jϕ2KV(D)

Jϕ1 ∧ ϕ2KV(D) = Jϕ1KV(D) ◦ Jϕ2KV(D)

J∃x.ϕKV(D) =
M

u∈V

JϕKV(D[x/u]])

J∀x.ϕKV(D) =
Y

u∈V

JϕKV(D[x/u])

J∃X.ϕKV(D) =
M

V ′⊆V

JϕKV(D[X/V ′])

J∀X.ϕKV(D) =
Y

V ′⊆V

JϕKV(D[X/V ′])

Table 1.The semantics of wMSO-formulas

We abbreviateJϕKFree(ϕ) by JϕK. ForK being the 2-valued Boolean algebraB = {0, 1},

wMSO(B, (Σ̃, C)) reduces to the usual MSO logic. Accordingly,L ⊆ DAG(Σ̃, C)

is FO-definableif its support is definable in FO(B, (Σ̃, C)), i.e., in the fragment of
wMSO(B, (Σ̃, C)) in which no second-order quantifier occurs. We say that the series
S ∈ K〈〈DAG(Σ̃, C)〉〉 is anFO-definable step functionif S =

⊕n

i=1 ki ◦ 1Li
for some

n ∈ IN, ki ∈ K, and FO-definable languagesLi. We callϕ ∈ wMSO(K, (Σ̃, C))
restrictedif it contains no universal second-order quantification and, for any subformula
∀x.ψ of ϕ, JψK is an FO-definable step function. We denote the set of restricted wMSO-
formulas overK and(Σ̃, C) by wRMSO(K, (Σ̃, C)). Finally, let wREMSO(K, (Σ̃, C))

be theexistentialfragment of wRMSO(K, (Σ̃, C)), which contains the formulas of the
form ∃X1 . . . ∃Xn.ϕ where the kernel formulaϕ ∈ wRMSO(K, (Σ̃, C)) contains no
second-order quantifier.5

Even for words, wMSO has to be restricted because, otherwise, definability exceeds
recognizability. While, in their logic, Droste and Gastin [7] deal withrecognizablestep
functions exploiting the notion of determinism for finite automata, we have to cope with
FO-definablefunctions in the context of dags. Fortunately, we can show unambiguity of1L for FO-definableL, which is a cornerstone in establishing a logical characterization
of wACATs.

Theorem 4.1. Any FO-definable set of(Σ̃, C)-dags is unambiguously recognizable.

Proof (Sketch).It is well-known that any first-order formula can be written as the
Boolean combination of statements “the patternP occurs at leastn times”. Here,P
is meant to be the (isomorphism type of the) environment of a node bounded by some
radiusR ∈ IN, also called anR-sphere. In [2], an ACATAR over dags detects theR-
environment of any node. To transform the formula into an equivalent ACAT, we need

5 It is not trivial to rewrite every wRMSO-formula into a wREMSO-formula. The problem is
that it is not clear if for an FO-definable languageL (as used in an FO-definable step function)
the characteristic series1L is again wFO-definable (see also the discussion in Section 6).

10

www.manaraa.com

to equipAR with a (deterministic) threshold counting procedure to count how often a
sphere is used in a run. However,AR from [2] is not unambiguous due to some coloring
of spheres that is not unique. Such a coloring can be performed unambiguously so that
any first-order formula can be simulated by an unambiguous ACAT. �

Corollary 4.1. {D ∈ DAG(Σ̃V , C) | D valid} is unambiguously recognizable.

Proof. It suffices to show FO-definability. In fact, it is easy to provide an FO formula
requiring that, for any first-order variablex, there is exactly one node whose labeling is
1 in the component that corresponds tox. ⊓⊔

Example 4.1.Consider the ringZ = (Z,+, ·, 0, 1) and the class of lossy message se-
quence charts withAg = {1, 2}, cf. Example 2.2. Then the formula

ϕ = (∃x.λ(x) = 1!2) ∨ (∃y.− 1 ∧ λ(y) = 2?1)

defines a seriesJϕK which maps every lossy MSCM to the number of messages from
process1 to 2 that are lost.

The remainder of this paper is dedicated to the proof of our main theorem:

Theorem 4.2. LetK be a commutative semiring andS ∈ K〈〈DAG(Σ̃, C)〉〉. Then, the
following are equivalent:

1. S is recognizable,
2. S is wRMSO-definable, and
3. S is wREMSO-definable.

5 Definable Series are Recognizable

In this section we show that series defined by restricted formulas are recognizable. Due
to Corollary 4.1 and Propositions 3.1 and 3.3, we can restrict to valid (Σ̃, C)-dags.

By the closure properties of wACATs as stated in Propositions 3.1 and 3.2, we get:

Proposition 5.1. Letϕ, ψ ∈ wMSO(K, (Σ̃, C)).

(a) If ϕ is atomic or the negation of an atomic formula, then[[ϕ]] is recognizable.
(b) If [[ϕ]] and [[ψ]] are recognizable, then[[ϕ ∨ ψ]] and [[ϕ ∧ ψ]] are recognizable.
(c) If [[ϕ]] is recognizable, then[[∃x.ϕ]] and[[∃X.ϕ]] are recognizable.

Proposition 5.2. Let ϕ ∈ wMSO(K, (Σ̃, C)) with [[ϕ]] =
∑n

i=1 ki ◦ 1Li
an FO-

definable step function. Then,[[∀x.ϕ]] is recognizable.

Proof (Sketch).Let W = free(ϕ) andV = free(∀x.ϕ) = W \ {x}. Furthermore,
[[ϕ]] =

∑n

i=1 ki1Li
with ki ∈ K andLi ⊆ DAG(Σ̃W , C) FO-definable languages for

i = 1, . . . , n. By Theorem 4.1, everyLi is recognized by an unambiguous ACAT. FO-
definable languages are closed under union, complement and intersection. Therefore,
{Li | i = 1, . . . , n} can be assumed being a partition ofDAG(Σ̃W , C) with ki 6= kj

11

www.manaraa.com

for i 6= j. First, letx ∈ W . We putΓ = Σ × {1, . . . , n} and consider(Γ̃V , C)-
dagsD̃ = (V, {⊳l}l∈C , (λ, σ, ρ)) with λ : V → Σ, σ : V → {1, . . . , n}, andρ :

V → {0, 1}V . Let L̃ ⊆ DAG(Γ̃V , C) such that, for anỹD ∈ L̃, anyv ∈ V , and any
i ∈ {1, . . . , n}, we have(σ(v) = i) ⇐⇒ (V, {⊳l}l∈C , (λ, ρ[x/v])) ∈ Li. Note that
ρ[x/v] : V → {0, 1}W .

Since theLi are FO-definable, one can build an FO-formulaϕ̃ definingL̃ (we omit
the details). Asϕ̃ is an FO-formula, the languagẽL = L(ϕ̃) is recognizable by an
unambiguous ACATÃ = (Q,∆, T, F) by Theorem 4.1. Lett = (q, (a, σt, ρt), q) ∈

Trans(eΓV ,C)(Q) with a ∈ Σ, σt ∈ {1, . . . , n}, andρt ∈ {0, 1}V . We transformÃ =

(Q,∆, T, F) into a wACATA = (Q,µ, T, γ) by adding weights as follows: setµ(t)
to beki if t ∈ ∆ andσt = i. Otherwise,µ(t) = 0. Moreover,γ(q1, . . . , q|Ag|) = 1 if

(q1, . . . , q|Ag|) ∈ F , andγ(q1, . . . , q|Ag|) = 0 otherwise. SincẽA is unambiguous and

recognizes̃L, the weight of an extended dag̃D ∈ L̃ in A is
∏

1≤i≤n k
|σ−1(i)|
i and for

D̃ /∈ L̃ we have(‖A‖, D̃) = 0. Now we consider the projectionh : DAG(Γ̃V , C) →DAG(Σ̃V , C) mappingD̃ = (V, {⊳l}l∈C , (λ, σ, ρ)) toD = (V, {⊳l}l∈C , (λ, ρ)). Note
that forD ∈ DAG(Σ̃V , C) there is a uniquẽD ∈ L̃ with h(D̃) = D. Hence, we have

(
h(‖A‖),D

)
=

⊕

eD∈h−1(D)∩eL

(
‖A‖, D̃

)
=

(
‖A‖, D̃

)
=

∏

1≤i≤n

k
|σ−1(i)|
i

=
∏

v∈V

(
[[ϕ]], (D, ρ[x/v])

)
=

(
[[∀x.ϕ]],D

)
.

By Proposition 3.2,[[∀x.ϕ]] is recognizable. The casex /∈ W is derived easily. ⊓⊔

By Propositions 5.1 and 5.2, we have immediately:

Theorem 5.1. LetK be a commutative semiring and letS ∈ K〈〈DAG(Σ̃, C)〉〉. If S is
wRMSO-definable, thenS is also recognizable.

6 Recognizable Series are Definable

ForS ∈ K〈〈DAG(Σ̃, C)〉〉, let Supp(S) = {D ∈ DAG(Σ̃, C) | (S,D) 6= 0}. We adopt
the notion of anunambiguousFO(K, (Σ̃, C))-formula [7]:

– All atomic formulas apart fromk and their negations are unambiguous.
– If ϕ andψ are unambiguous, then so areϕ ∧ ψ, ∀x.ϕ, and∀X.ϕ.
– If ϕ andψ are unambiguous and Supp(JϕK) ∩ Supp(JψK) = Ø, thenϕ ∨ ψ is

unambiguous.
– If, finally, ϕ is unambiguous and, for any(D, ρ) with ρ : V → {0, 1}Free(ϕ), there

is at most one vertexu of D such thatJϕKFree(ϕ)∪{x}(D, ρ[x/u]) 6= 0, then∃x.ϕ
is unambiguous.

Observe that, though, syntactically, we deal with ordinaryMSO formulas, an unam-
biguous formula is primarily a weighted formula, as unambiguousness is defined in
terms of its series. Letϕ ∈ FO(K, (Σ̃, C)). If ϕ is unambiguous, thenJϕK is an FO-
definable step function. We know from [7] that certain simpleformulas can be made
unambiguous:

12

www.manaraa.com

Proposition 6.1 ([7]). Let ϕ ∈ FO(K, (Σ̃, C)) be a (positive) Boolean combination
of atomic formulas apart fromk and their negations. Then, there is an unambiguous
formulaϕ+ ∈ FO(K, (Σ̃, C)) such thatJϕ+K = JϕK.

Proof. We proceed by induction and simultaneously define formulasϕ+ andϕ−. If
ϕ ∈ FO(K, (Σ,C)) is atomic or the negation of an atomic formula, we setϕ+ = ϕ and
ϕ− = ¬ϕ (where¬¬ψ is reduced toψ). Moreover, we let

– (ϕ ∨ ψ)+ = ϕ+ ∨ (ϕ− ∧ ψ+),
– (ϕ ∨ ψ)− = ϕ− ∧ ψ−,
– (ϕ ∧ ψ)− = ϕ− ∨ (ϕ+ ∧ ψ−), and
– (ϕ ∧ ψ)+ = ϕ+ ∧ ψ+. �

In the context of words and an (E)MSO logic that employs the predicate≤ instead
of the direct successor relation, Droste and Gastin need to transform an ordinary MSO
formulaϕ into an unambiguous weighted MSO formulaϕ′ such thatJϕ′K is the char-
acteristic series of the language ofϕ [7]. To this aim, they identify the unique least
position of a word (wrt.≤) that satisfies a given property. In our logic, such an iden-
tification is no longer feasible. Nevertheless, we can transform any wACAT into an
equivalent weighted formula.

Theorem 6.1. LetA be a wACAT over commutativeK and(Σ̃, C). There is a sentence
ψ fromwREMSO(K, (Σ̃, C)) such thatJψK = ‖A‖.

Proof. LetA = (Q,µ, T, γ) be a wACAT overK and(Σ̃, C). In the following,t andt′

will range overTrans(eΣ,C)(Q). SetX to be a collection(Xt) of second-order variables
and supposeAg = {1, . . . , N} for someN ∈ IN. The construction of a wREMSO
sentence fromA follows the route of transforming a finite automaton into a formula
where an interpretation of second-order variables reflectsan assignment of vertices to
transitions. We first provide some building blocks of the desired wREMSO formula.

The unambiguous formula

Partition(X) := ∀x.
∨

t

(x ∈ Xt ∧
∧

t′ 6=t

¬(x ∈ Xt′))

claims thatX actually represents a run, i.e., an assignment of vertices to transitions.
Givena ∈ Σ andq ∈ Q, ϕ+

(a,q)(x) (ϕ−
(a,q)(x)) shall denote the disjunction (con-

junction) of formulasx ∈ Xt (¬(x ∈ Xt)) such thatt = (q, a, q) for someq, respec-
tively.

Now let t = {((a1, q1), ℓ1), . . . , ((am, qm), ℓm)} −→ (a, q). To ensure thatx is
contained inXt only if the transition taken atx corresponds tot, we use

Transt(x,X) := x ∈ Xt ∧ λ(x) = a ∧
∧

k∈{1,...,m}

∃y.
[
y ⊳ℓk

x ∧ ϕ+
(ak,qk)(y)

]+

∧ ∀y.
[∧

ℓ∈C

¬(y ⊳ℓ x) ∨
∨

k∈{1,...,m}

(
y ⊳ℓk

x ∧ λ(y) = ak

)]+

.

13

www.manaraa.com

Another difficulty is to determine the weight of a global finalstateq with respect
to an extended dag. We would like to identify, for any agenti ∈ Ag with q[i] 6= ı,
theΣi-maximal node. For this purpose, we demand the unique upwards-closed set of
nodesY that contains a single minimal elementx such thatx is the only node executed
by agenti. Then,x is Σi-maximal and shall be contained inXt for some transition
t = q −→ (a, q[i]). Therefore, we define maxi(x, Y)

maxi(x, Y) :=
[∨

a∈Σi

λ(x) = a
]+

∧ x ∈ Y

∧ ∀y.∀z.
[
¬(y ∈ Y) ∨ ¬(y ⊳ z) ∨ z ∈ Y

]+

∧ ∀y.
[
¬(y ∈ Y) ∨

∧

a∈Σi

¬(λ(y) = a) ∨ y = x
]+

∧ ∀y.(¬ϕ1 ∨ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ¬ϕ2 ∧ ϕ3))

whereϕ1 = (y ∈ Y), ϕ2 = (y = x), andϕ3 = ∃z.(z ∈ Y ∧ [
∨

(a,ℓ)∈Σ×C (z ⊳ℓ y ∧

λ(z) = a)]+). Hereby, the last conjunct ensures unambiguity of maxi(x, Y) by requir-
ing thatx is theonly minimal event inY .

To collect the weights of global final states, we require, foranyq ∈ (Q ·∪ {ı})Ag , a
formula Finalq(X,Y1, . . . , YN) :=

∧

i∈Ag
q[i]∈Q

∃x.
[
maxi(x, Yi) ∧

(∨

a∈Σ

ϕ+
(a,q[i])(x)

)+]
∧

∧

i∈Ag
q[i]=ı

∀x.
∧

a∈Σi

¬(λ(x) = a) .

To simulate the type functionT , we make use of the unambiguous formula Type(X) :=

∀x.
∧

(a,q)∈Σ×Q

[
ϕ−

(a,q)(x) ∨
(
[ϕ+

(a,q)(x)]
+ ∧

∧

(b,ℓ)∈T (a,q)

∃y.(x ⊳ℓ y ∧ λ(y) = b)
)]+

.

We are now prepared to specify the desired formulaψ. Namely, setting

ψ′(X) =∃Y1 . . . ∃YN .

Partition(X) ∧
∧

t

∀x.(¬(x ∈ Xt) ∨ Transt(x,X))

∧
∧

i∈Ag

(
∃x.maxi(x, Yi)

)
∨ ∀x.

(
¬(x ∈ Yi) ∧

∧

a∈Σi

¬(λ(x) = a)
)

∧
∧

t

∀x.(¬(x ∈ Xt) ∨ ((x ∈ Xt) ∧ µ(t)))

∧ Type(X) ∧
∨

q∈F

(
Finalq(X,Y1, . . . , YN) ∧ γ(q)

)
,

we finally let ψ = ∃X.ψ′ ∈ wREMSO(K, (Σ̃, C)). Observe that the subformula
¬(x ∈ Xt) ∨ ((x ∈ Xt) ∧ µ(t)) of ψ is an FO-definable step function.

In fact, for anyD = (V, {⊳ℓ}ℓ∈C , λ) ∈ DAG(Σ̃, C), we haveJψK(D) = (‖A‖,D).
Thus, we obtainJψK = ‖A‖. �

14

www.manaraa.com

References

1. C. Baier and M. Gr̈oßer. Recognizing omega-regular languages with probabilistic automata.
In Proceedings of LICS 2005. IEEE Computer Society Press, 2005.

2. B. Bollig. On the expressiveness of asynchronous cellular automata. InProceedings of FCT
2005, volume 3623 ofLecture Notes in Comp. Sc., pages 528–539. Springer, 2005.

3. J. B̈uchi. Weak second order arithmetic and finite automata.Z. Math. Logik, Grundlag.
Math., 5:66–62, 1960.

4. K. Culik and J. Kari. Image compression using weighted finite automata.Computer and
Graphics, 17(3):305–313, 1993.

5. V. Diekert and G. Rozenberg, editors.The Book of Traces. World Scientific, Singapore,
1995.

6. M. Droste and P. Gastin. The Kleene-Schützenberger theorem for formal power series in
partially commuting variables.Inform. and Comp., 153:47–80, 1999.

7. M. Droste and P. Gastin. Weighted automata and weighted logics. InProceedings of ICALP
2005, volume 3580 ofLecture Notes in Comp. Sc., pages 513–525. Springer, 2005.

8. M. Droste, P. Gastin, and D. Kuske. Asynchronous cellularautomata for pomsets.Theoret.
Comp. Sc., 247(1-2):1–38, 2000.

9. M. Droste and G. Rahonis. Weighted automata and weighted logics on infinite words. In
10th Int. Conf. on Developments in Language Theory (DLT), volume 4036 ofLecture Notes
in Comp. Sc., pages 49–58. Springer, 2006.

10. M. Droste and H. Vogler. Weighted tree automata and weighted logics.Theoret. Comp. Sc.,
366:228–247, 2006.

11. C. C. Elgot. Decision problems of finite automata design and related arithmetics.Trans.
Amer. Math. Soc., 98:21–52, 1961.

12. S. Jesi, G. Pighizzini, and N. Sabadini. Probabilistic asynchronous automata.Mathematical
Systems Theory, 29(1):5–31, 1996.

13. W. Kuich. Semirings and Formal Power Series. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 9, pages 609–677. Springer, 1997.

14. D. Kuske. Emptiness is decidable for asynchronous cellular machines. InProceedings of
CONCUR 2000, volume 1877 ofLecture Notes in Comp. Sc., pages 536–551. Springer, 2000.

15. D. Kuske. Weighted asynchronous cellular automata. InProceedings of STACS 2006, volume
3884 ofLecture Notes in Comp. Sc., pages 685–696. Springer, 2006.

16. I. Mäurer. Weighted picture automata and weighted logics. InProceedings of STACS 2006,
volume 3884 ofLecture Notes in Comp. Sc., pages 313–324. Springer, 2006.

17. I. Meinecke. Weighted logics for traces. InProceedings of CSR 2006, volume 3967 of
Lecture Notes in Comp. Sc., pages 235–246. Springer, 2006.

18. M. Mohri. Finite-state transducers in language and speech processing.Computational Lin-
guistics, 23(2):269–311, 1997.

19. E. Ochmánski. Regular behaviour of concurrent systems.Bulletin of the EATCS, 27:56–67,
1985.

20. Ph. Schnoebelen. The verification of probabilistic lossy channel systems. InValid. of
Stochastic Systems, volume 2925 ofLecture Notes in Comp. Sc., pages 445–465. Springer,
2004.

21. M.P. Scḧutzenberger. On the definition of a family of automata.Information and Control,
4:245–270, 1961.

22. W. Zielonka. Notes on finite asynchronous automata.R.A.I.R.O. — Informatique Théorique
et Applications, 21, 1987.

15

