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Abstract. We provide a model of weighted distributed systems and giogiaal
characterization thereof. Distributed systems are reptesl as weighted asyn-
chronous cellular automata. Running over directed acgehphs, Mazurkiewicz
traces, or (lossy) message sequence charts, they allonoieling several com-
munication paradigms in a unifying framework, among theobgbilistic shared-
variable and probabilistic lossy-channel systems. We ghatvany such system
can be described by a weighted existential MSO formula aiu#, versa, any
formula gives rise to a weighted asynchronous cellularraaton.

1 Introduction

Classical automata theory has become an indispensablatowny modern areas of
computer science, supporting, for example, programmingdages and specification
and verification techniques. In some applications, autameaéd to cope with quantita-
tive phenomena. Then, taking a transition in an automatacdempanied by measuring
its cost or weight. For example, a system might provide a tmuracking the number of
occurrences of a given pattern; or its behavior might depengrobability laws so that
the outcome of a transition is generally uncertain and dépen a probability distri-
bution. Actually, automata with weights enjoy manifold &pgtions in numerous areas
such as speech recognition [18], probabilistic systemslJlZand image compression
[4].

Formally, the behavior of a weighted automaton is no londgeracterized by the
pure existence of an accepting run. Rather, a weighted atonmcomes up with a
formal power seriegassigning to any possible execution sequence a value frama s
ring. More precisely, the values collected along an automakecution are multiplied,
whereas nondeterminism is resolved by summation thereyeitteralizing the two op-
erations of the two-valued Boolean algebra, cf. [13].

For a long time, the correspondence of automata and logibéeas a captivating
research direction in computer science. The probably namsoéis result goes back to
Buchi and Elgot, who discovered a precise correspondenaebatfinite automata and
the logical formalism of monadic second-order (MSO) forasu|3, 11]. In particular,
any system description formalized in the MSO language campegith an implementa-
tion in terms of a finite automaton. Concerning weighted sz, most results estab-
lish Kleene-like theorems stating that a formal power sdgealescribed by a weighted
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automaton iff it is rational [21, 6, 15]. A logical charadtztion of weighted automata
has been achieved only recently: Droste and Gastin opened aesearch direction by
providing a weighted MSO logic to define formal power seriesronvords [7]. Their
achievements have been extended, among others, to automatéinite words [9],
trees [10], pictures [16], and traces [17].

In this paper, we deal with a model for weighted distributggtems that unifies
many communication paradigms such as shared-memory sysfieissy) channel sys-
tems, etc. It is constituted by asynchronous cellular aatanACAS) [8] running on
directed acyclic graphs (dags) without auto-concurredajike finite automata, which
process their input words in a sequential fashion, ACAs ppapriate to concurrent
executions. Accordingly, the assignment of weights dodsdepend on the order in
which independent events are executed. ACAs have alreadydrpiipped with weights
by Kuske to recognize formal power series over traces [18heBalizing results by
Ochmadski [19] and Droste and Gastin [6], he showed that a seriesgiglar iff it is
recognized by some weighted ACA. Actually, we provide amevere general model
subsuming Kuske’s automata. Running over dags rather theed, our weighted ACA
can cope with many common domains for concurrency, not oabes but also message
sequence charts which play a prominent role in telecomnatinit. As we will dis-
cuss in the course of this paper, the latter domain allowsrareeding of probabilistic
lossy-channel systems. Our main result states that welgk&s recognize precisely
the formal power series that are definable in an existeméghfient of a weighted MSO
logic over dags. This result cannot be obtained by a traoslatf the word setting as
it was done for traces [17]. On the other hand, a lot of tecirddficulties arise in
our setting compared to this of words. Especially, we hay@ooe an unambiguity re-
sult for first-order definable languages before establgstiie main theorem. For words
such an unambiguity result is for free since determiniséicicks suffice to recognize
all regular languages. Moreover, the construction of a tteid formula from a given
weighted asynchronous cellular automaton is much moreyttttan for words.

The paper is structured as follows: in Section 2, we intredogr notion of a dag
over a distributed alphabet. Hereby, a distributed alphedestitutes the system archi-
tecture by assigning to any process its supply of actionsti®e3 introduces ACAs
first in their classical, then in their weighted form. The aebr of a weighted ACA
will be described in terms of a formal power series over (asstibf) the class of dags.
Having introduced weighted MSO logic over dags in Sectioektions 5 and 6 derive
our main result, the precise correspondence between veeigi@As and the existential
fragment of weighted MSO logic.

2 Dags over Distributed Alphabets

We fix a nonempty finite setlg of agents a distributed alphabebf, which is a tuple
(X4)ic a4 Of (nOt necessarily disjoint) alphabels, and an alphabet. Elements from
X; are understood to bactionsthat are performed by agentLet X' = UieAg X
denote the set of all the actions. The actions will label thdes of a graph, which
we will later refer to asevents Elements fromC' label edges of a graph to provide
a kind of control information. For example, they might refldee type of a message
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represented by an edge between communicating events.ekfglilgraphover (X, C)
is a structurgV, {<;}occ, ) whereV is its finite set ohodes<i, C V x V are disjoint
binary relations o/, and\ : V' — Y'is thelabeling function We call<i := (J, . <
the edge relationand set< = <* and< = <. Foru,v € V, we define thecover
relationu < v of < bywu < v and, foranyw € V,u < w < v impliesw = v. A
directed acyclic graptidag) over( X, C) is a graph(V, {<¢}scc, A) over (X, C) such
that < is irreflexive and< is a partial order. The set of all those dags is denoted by
DAG(X,C). Fora € X, we putioc(a) := {i € Ag | a € X;}. Then,a andb are
independentwriting a I b, if loc(a) N loc(b) = ©. Otherwise, we say andb are
dependentwriting a D b.

We now introduce the models representing the behavior os&esyof communi-
cating agents. In doing so, we combine and extend the maaeis[8, 14, 2].

Definition 2.1. A (X, C)-dagis a dag(V, {<l¢}ecc, A) € DAG(Z, C) where

— foranyi € Ag, \=1(%;) is totally ordered by< and
— forany/ € C and(u,v), (v',v") € < with A(u)DgA(u’) and A(v) D A(v'), we
haveu < u' iff v < v'.

The set of al( Z, C')-dags is denoted bPAG(X, C).

The first condition reflects that a single agent is considevexperate sequentially.
Especially, there is no auto-concurrency. The second tonainsures a FIFO architec-
ture of communicating systems. Messages) and(v’, v") of the same type between
the same agents are received in the same order as they havedmeBecause of the
FIFO-architecture and the absence of auto-concurrencgowelude that, in &%, C)-
dag (V, {<¢}eecc, ), foranyu € V, ¢ € C, anda € X, there is at most one vertex
v € V such that bothy <1, v (orv <1, u) andA(v) = a2 If C is a singleton, we actually
deal with structuresV, <1, \) and we speak af-dags.

The automaton model as introduced in the next section mnits every node
u € Vofa(X, C)-dag(V,{<}eec, A) the direct neighborhood af. Therefore, we
introduce the following abbreviations: Fare V', we denote by Redd) := {(a,{) €
YxC|3IweV v uhAv) = a} theread domainof v and, given(a, ?) €
Readu), let (a, £)-predu) be the unique vertex such that bothv <, w andA(v) = a.
Similarly, let Writg(u) := {(a,¢) € ¥ x C | v € V : u <y v A A(v) = a} be the
write domainof « and, for(a, ) € Write(u), (a, £)-sucqu) denote the unique vertex
v such that bothy <1 v andA(v) = a. Fori € Ag andV; = {u € V | A(u) € X},
sequential progress of an agent Ag is reflected by<; := < N (V; x ;) and the
total order<; := < N (V; x V;) (do not mistake relatiori; of agent: for edge relation
< forl e O). Foru € V andi € Ag, uis X;-maximalif « € V; and thereisne € V;
such thats < v. Obviously, there is at most ong;-maximal vertex.

Dags over distributed alphabets subsume popular domac@eiirrency:

Example 2.1 (Mazurkiewicz Traces [5}\e consider distributed systems where an ac-
tiona € X is executed simultaneously by any componeatioc(a). The behavior of

8 As a consequence, the underlying graph has bounded dedrisepfbperty is essential in
establishing the coincidence between recognizabilitylagital definability [2].
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such a “shared-memory” system is described naturally byt afdeaces. Commonly,
traces are defined as congruence classes of words or as dapergtaphs. In our set-
ting, we model a trace as the union of the Hasse diagrams dbthkorders of the
different agents. Moreover, the labeling of an edge betw@emodes: andv provides
information about which agents executendv consecutively. In detail, &ace over
3 is a dag(V, {<r}eeam, A) from DAG(X,249) such that botha = U, 4, <i and,
for any (u,v) € < and? € 249, u <, viff £ = {i € Ag | u <; v} (recall that
<; Is the cover relation oK;). This modeling of a trace will turn out to be tremen-
dously helpful when simulating shared-memory systemsringeof asynchronous cel-
lular automata, as the edge relation will be used to acomsani/ event: and any agent
i € loc(A(u)), the current state afe Ay right before executing. A sample trace over
Y = ({a,b, ¢}, {a,b,d}, {a,b}) (with Ag = {1,2,3}) is depicted in Fig. 1(a).

Example 2.2 ((Lossy) Message Sequence Chatg)ther communication paradigm
is that of channel systems: several componénts Ag communicate by sending and
receiving messages through channels. Safet= (Ag x Ag) \ ida, be the set of
channels. To model the behavior of such a system, we needdagplies of send and
receive actions: fof € Ag, letI'; denote{i!j | (i,5) € Ch} U {i?j | (i,5) € Ch}, the
set of(communication) actionsf agenti. Action i!j reads asi'sends a message ft
Accordingly,j?i is the complementary receive action. liébe the distributed alphabet
(I7)icaq- A message sequence ch@1SC) overAg is aI'-dag(V, <, A) such that,
foranyi € Ag, <; is the cover relation of;, for any (u,v) € < with A(u) Ix A(v),
Au) = ¢lj andA(v) = 574 for somei, 5, and, for anyu € V, there isv € V satisfying
bothA(u) I A(v) and either, <1 v orv < u. Observe that, due to the general definition
of af—dag, we deal with a model for FIFO communication. If we domsejuire a send
event to be followed by a corresponding receive event, wewiéaa lossyMSC. More
precisely, the last condition in the definition of an MSC isakened as follows: for any
v € V with X\(v) a receive action, there is € V' satisfyingA(u) I A(v) andu < v.
Figure 1(b) depicts an MSC ovét, 2}, whereas the structure from Fig. 1(c) is not an
MSC but a lossy MSC.

c d 112 21 112 271
{1} {2}
a {2} 172 271 112
{1,3} d
b {2} 112 271 112 271

(@) (b) ()

Fig.1. A trace over({a,b,c},{a,b,d},{a,b}), an MSC over{1,2}, and a lossy MSC over
{1,2} that is not an MSC
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3 Weighted Asynchronous Cellular Automata

First we provide the unweighted model of an asynchronodslaelutomaton, similar

to the one proposed in [2]. Actually, we deal with asynchiecellular automateith
types(ACATs) over (X, C)-dags, which have limited access to the future. To express
“communication requests”, a type function associates aithactions and any state

the set of actions that henceforth “communicate” witprovided executing results in
stateq. Regarding lossy MSCs, for example, we might require antdedeled with a
send action !2 to be followed by the suitable receive event, which is théeled with

the communication action?1. For some classes the expressive power of ACAs with
and without types coincide. But in general, omitting theatypnction severely restricts
the expressive power of ACATS [2].

Definition 3.1. Anasynchronous cellular automaton with tyga&AT) over(i, C)is
a structureA = (Q, A, T, F') where

— @ is the nonempty finite set sfates

= AC Trans 5 ,(Q) == (Q U {~})**¢ x ¥ x Q is the set ofransitions
- T : (X x Q) — 2¥*% s thetype function and

— F C (Q U {1})9 is the set of globafinal states

We often write(7, a,q) € Awithg € (Q U {—})¥*¢ asg — (a, q). Note that
g[(b, ¢)] = — means that there is , ¢)-predecessor. Hence, we will sometimes write
g as an element frofB(X x C' x Q). The idea of a run of an asynchronous cellular
automatonA on a (¥, C)-dagD = (V,{</}wec, A) is an additional labeling of the
nodesu € V with states; € @ such that the local neighborhoods match the transitions,
after executingD the system is in a final state, and the requests of the typ¢idmrare
satisfied.

First, let us consider the following exampld: = (Q, A, T, F') running on lossy
MSCs over agent$1, 2}, cf. Example 2.2. We pu® = {qo, ¢1 }. Now, the follow-
ing transitions are iM\: @ — (1!2,q0), (1!2,q0) — (1!2,q1), (1!12,¢1) — (112, qo),

(112,q0) — (271, q0), {(1!2,90), (271, 90)} — (271,q1),

112 @) @)271  and {(1!2,q1),(2?1,40)} — (2?1,q1). Moreover, we put
T(1'2,q0) = {271} andF = {(1,40),(2,41)}. Then the
picture on the left hand side depicts a successful rusa oh

112 @ the lossy MSC from Figure 1(c). For every node, the node
itself together with its read domain is covered by a transi-
tion. Furthermore, agertstops ing, and agen? in ¢;. Last

112 Qo) @271 but not least, every send evei® in stateg is followed by
a receive ever??1 as imposed by the type function.

To be precise, let : V' — Q. We write(D, p) to denote the da@/, {<i¢}ecc, (A, p))
over(X' x @, C). For(D, p), lettrans(p ) : V — Trans s - (Q) describe the down-
ward local neighborhood, i.e., for any € V' let transp ,)(u) = (g, Mu), p(u))
where, for anyb,¢) € X' x C,

_ - if (b,¢) ¢ Readu),
ql(b,0)] = { p((b,0)-predu)) if (b, ¢) € Readu).

5
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Moreover, we defingfinalp, ,) € (Q U {1}1)49 by final(p ,[i] = o for any agent

i € Ag with V; = . Otherwise final p ,)[i] = p(u) whereu is X;-maximal inV.
Thus, if the system starts in the global statgc 4, and execute®, then it ends up in
the global statgfinal  ,). Now arun of A onD is a mapping : V' — @ such that,
foranyu € V, trans(p ,)(u) € A. Moreover,p is acceptingif both final( ,) € F
and, for anyu € V, we haveT (A(u), p(u)) C Write(w). The intuition behind the latter
condition is that we require Wrife) to contain at least the communication requests
imposed by the type function of the automaton. The languagé) is the set of allD
such that there is at least one accepting rupla@in D. We call A unambiguousf, for

any (X, C)-dagD and any two accepting runs p’ of A on D, we havep = p'.

AsetL C DAG(X, C) is calledrecognizablef L(.A) = L for some ACAT.A over
(f], (). Similarly, we say thaf. is unambiguously recognizabieL(.A) = L for some
unambiguous ACATA over (X, O).

A weighted automaton is no longer characterized by the set@#pted executions.
Rather, it assigns to any possible execution a value frommarisg). A semiring is a
structureK = (K, ®, 0,0, 1) with two binary operations, addition and multiplication,
and constant® and1, such that(K, @, 0) is a commutative monoid,k, o, 1) is a
monoid, multiplication distributes over addition, ac &k = k o 0 for anyk € K.
We sayK is commutativef the multiplicationo is commutative. Sample semirings are
(N, +,+,0,1), the 2-valued Boolean algebBa= ({0,1},V, A,0,1), and the proba-
bilistic semiringP = ([0, 1], max, -, 0, 1). Throughout this paper, we fix a commutative
semiringK = (K, ®, 0,0, 1). Commutativity is needed for a proper definition of au-
tomata behavior and several closure properties.

Definition 3.2. Aweightedasynchronous cellular automaton with tyga#CAT) over
Kand(X,C) is a structure(Q, p, T, ) where

— @ is the nonempty finite set sfates
- W Tmns(ic)(Q) — K is thetransition weight function

- T: (¥ x Q) — 2¥*% s thetype function and
— v :(Q U {1})49 — Kis thefinal weight function

In a wACAT, the values of a semiring that are collected alongxecution of the au-
tomaton are multiplied, whereas nondeterminism is resdbyesummation. The behav-
ior of such an automaton will be a functigh: DAG(X, C) — K, also called dormal
power seriesThe collection of all these functions is denoteddiyDAG(Z, C))).

More precisely: leD = (V, {</}sec, A) be a(X, C)-dag. In the weighted setting,
every mapping : V — @ is referred to as aun. Theweightof p is the product

weight(D, p) := (H ,u(tmns(np) (u))) o y(ﬁnal(gyp)) .
ueV

We call p successfuf T'(A(u), p(u)) € Write(u) for anyu € V. We thus can assign
to A a formal power seriefA|| € K{(DAG(X, C))) by

(MILD) = P weight(D, p)

PV —Q
p successful
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foranyD = (V, {<s}eec, A) € IDAG@, (). Note that, in the context of formal power
series||.A|, D) is a common notation fof.A||(D).

For L C DAG(X, C), thecharacteristic seried;, : DAG(X, C) — K is given by
(1,D)=1if D e Land(1,,D) = 0if D ¢ L. We say thalS € K{(DAG(X,C))) is
recognizablef there is a WACATA with ||A] = S.

Example 3.1 (Probabilistic Lossy-Channel Systems [20probabilistic lossy-channel
system is a tuplé® = ((Qs,9:)icag, ", (145(0)) (i.j)e ch.qc,): With any agent, we
associate a sequential process, which is composed of adtateespacé); and a tran-
sition relationd; C Q; x I; x Q;. Recall thatl; comprises the set of communication
actions executed by agenti.e., actions of the formi!j or i7j with ¢ # j. We shall
assume); to be deterministic, i.e., for any € @Q; ando € I3, there is at most one
¢ € Q; suchthaiq,o,q’) € ;. Moreover, the system is equipped with a global initial
stateg™ ¢ HieAg Q;. There is an unreliable channel in between any two agearid;
with ¢ # 4, i.e., depending on a stajec @; in which a message is sent, a chanfef)
has a reliabilityr;;(¢) € [0, 1]. Thus, the message arrives at agemtith probability
ri;(q) and is lost with probability — r;;(q).

We will give the probabilistic lossy-channel systga semantics in terms of a
WACAT Ap = (Q,u,T,~) overP = ([0, 1], max, -,0,1) andI" reading lossy MSCs
whereQ = (U;c 4, Qi) x {success, failure, rec}. Here, we give just the idea of the
construction. Roughly speaking, we shift the reliabititedf the channels to the sequen-
tial processes. Then a state with second composietss is assigned to a send event
that succeeds in delivering a message, which is guarantedteltype function, i.e.,
T maps a pair of the forni!j, (¢, success)) to {j?i} and any other pair to the empty
set. Such auccess-state is entered with the probability that the transmissiacceeds.
In contrast, a send event that is equipped with a state tha¢sahe attributdailure is
entered with the probability that the transmission failsug, it cannot be followed by
a corresponding receive. Any other event will camy to indicate that we deal with a
receive event. As we do not explicitly deal with final statesnaps any possible final
configuration tol. For a lossy MSOV, (|| Ap ||, M) € [0, 1] might now be interpreted
to be the probability of acceptanceXf by P.

Example 3.2 (Probabilistic Asynchronous Automata [12)e model of asynchronous
automata [22] over Mazurkiewicz traces represents shawetory systems rather than
channel systems. In an asynchronous automaton runningogstrany action has to
be executed simultaneously by any componieatioc(a). Probabilistic asynchronous
automata have been introduced by Jesi, Pighizzini, andd8a@lja2]. In a probabilistic
asynchronous automaton, the outcome of a transition depeme probability distri-
bution on the set of global states of the system. Formaltyphabilistic asynchronous
automatorover X is a structurd3 = ((S;)icag, (Pa)acx, Gy, n) Where

— foreachi € Ag, S; is a nonempty finite set of<)local states

— for eacha € X, P, is a mappingS, x S, — [0, 1] such that, for ang € S,,
P.(5,.) is a probability distribution o, whereS, := {5 € [, 4,(Si U {*}) |
foranyi € Ag, s[i] = xiff i & loc(a)},

= qo € [Lica, Si is theglobal initial state and

= 1 [Lica, Si — {0, 1} assigns a weight to any possible final configuration.
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A probability distributionP,(5) reflects that, in a global configuration fropj, . ,,, Si
that coincides witls with respect to the locations frofnc(a), executing am will alter
at most the local statesof agents fromoc(a).

We provide the reader with a rather intuitive semantic8aind refer to [12] for
details. Roughly speakingi assigns to any trace a probability of acceptance. To de-
termine the acceptance probability of a tré&te= (V, {<¢},c04s, A) Over X' (see Ex-
ample 2.1),8 will fix an arbitrary linear extensiomw = (V,<’,A) of T, i.e.,<"is a
total-order relation containing.. As usual,w can be seenasawoid ...a, € X*
with n = |V|. Then, starting in the global initial statig, 5 readsw letter by letter and
assigns to any position= 1, ..., n a global state;, < HieAg S; such that going from
g,_1 10 g, changes at most the components fria(ay), i.€.,G,_4[i] = G,[¢] for any
i & loc(a). A step fromg,,_, toq,, uniquely determines a paiB;_1,35x) € Sa,, X Sa,
with 5, _1[i] = 5[i] = * for anyi ¢ loc(ar) ands,_1[i] = G, [7] andsi[i] = q,[i]
for any otheri. The sequencg,, .. .,g, might be called a run oB onw. The weight
of this particular run is the produdt],_, P, (Sk-1,5;) - 7(q,) (if n = 0, then
we set its weight to be(g,)). Summing up the weights of all possible runstbbn w
determines the valuez(7T) € [0, 1], the probability thafl is accepted bys.

Lemma 3.1. There is a WACATA = (Q, i1, T, v) over (R>g, +,-,0,1) and(Z’,2Ag)
suchthal@| < || x [[[;c, Siland (|| A[[,T) = P5(T) for any traceJ.*

Proof. LetQ =, x S, andT'(a,3) = @ for any(a,s) € X x Q.

acX
— Supposée = {((a1,51),41),.--,((an,3n), €n)} — (a,3) € Trans(g’QAy)(Q). If
3k € Sap k=1,...,n,5 € S,, and the setg;, € 249 are pairwise disjoint, then

u(t) is set to beP, (5, 5) wheres’ is determined as follows: for anye loc(a),
§'i] = qoli] if i & U=y, Lk, and, otherwises'[i] = 3,[i] for the uniquek €
{1,...,n} with i € ¢;. Any other transition is mapped

— Suppose] € (Q W {1})49. If there is7 € [Lica, Si such that, for any € Ag,
gli] =« impliesq'[i] = g,[i] andg[i] € Q impliesq’[i] = g[i][i], then sety(q) to
ben(g'). Otherwise, sef(g) to be0. O

Note that (weighted) ACATs relative to traces can actuabiywithout types. By
Lemma 3.1 and Theorem 4.2, we will give, as a byproduct, aktetformula defining
the behavior of a probabilistic asynchronous autom#ton

We collect some closure properties of recognizable segesed to show that de-
finable series are recognizable. 1%1t5’ € K(DAG(X, C))). Then, we defing o S for
kekK S+5,andS®S by (koS,D)=ko(S,D),(S+5,D)=(S,D)s(S,D),
and(S © 5, D) = (S, D) o (S, D) foranyD € DAG(X, C).

Proposition 3.1. Let S, $" : DAG(X, C') — K be recognizable an#l € K. Thenk o S,
S+ S',andS ® S’ are recognizable.

“ Note that we calculate values in the inter{@l1] only. But unfortunately([0, 1], 4, -,0, 1) is
not a semiring. Therefore, we turn (8>, +, -, 0,1).
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Now let X;, I'; be arbitrary alphabets fare Ag with ¥ = (J,.,, % and [ =
UieAg I;. Moreover, letr, : X — I such thatr,(X;) C I; for alli € Ag and
(a,b) € Ds iff (m,(a), 7,(b)) € Dg. Then, we callr : DAG(X, C) — DAG(I, C)
with 7(D) = (V, {<i }iec, mpo) for D = (V, {< }iec, ) € DAG(X, C) aprojection
from DAG(X, C) to DAG(I", C). Note thatr (D) is indeed &I, C')-dag because of the
properties ofr,. For S € K(DAG(Z,C))), let 7(S) be the series defined for every
D' € DAG(I, C) by (n(S), D') = Bper1(p (S, D).

Proposition 3.2. Let S € K{DAG(X,C)) andr : IDf\G(E,C) — DAG(I",C) be a
projection. If.S is recognizable, then(.S) € K{(DAG(I, C))) is recognizable.

Proposition 3.3. Let L. C IDAG(E, C) be an unambiguously recognizable language.
Then, the characteristic seridg, overK is recognizable.

4 Weighted Monadic Second-Order Logic

We fix setsVar = {z,y,...} of first-orderand VAR = {X,Y,...} of second-order
variables Still, we assume the semiririgbeing commutative.

Definition 4.1. The sewMSO(K, (X, C')) of weighted monadic second-order (WMSO)
formulas ovelk and (X, C) is given by (lek € K, a € X, and( € C):

pu=k|ANz)=a|~(ANz)=0a)|z<wy|-(z<wy) |lz=y|-(z=y)]|
zeX|a(zeX) |p1 Ve | o1 Ape | Jxp| IX .0 | Va.p | VX0

The formulask, A(z) = a, z <y y, v = y andz € X are calledatomic Negation
of k has no reasonable semantics for general semirings. Thahtain an intuitive
interpretation of negation in terms 0fandt, it is pushed to the atomic level, omittirig
In exchange, we have to enrich the syntax by conjunction andrsal quantification,
cf. [7]. Let Free(y) be the set of free variables gfand) € 2VerUVAE g finite set of
variables. We say thdd = (V, {<}sec, (N, p)) With p : V — {0,1}Y is valid if, for
any first-order variable: € V, there is a unique node € V such thato(u)[z] = 1.
In that casep(z) shall refer tou. Givenz € V andu € V, we define theupdate
plx/u] = p' : V — {0,1}Y such thap' (u)[z] = 1, p’(v)[z] = 0 for anyv € V' \ {u},
andp’ (v)[x] = p(v)[z] foranyv € V andz € V \ {z}. Similarly, p[X/V"] is defined
for X e VandV’' C V.

Note that, given a se¥ of variables, (weighted) ACATs can be extended to run
on dags ovefX x {0,1}Y,C): We define a distributed alphab&® = (XV);c 4, by
2V =5 x {0,1}V.

Definition 4.2. Suppose> € WMSO(K, (X, C))) and suppos® € 2VerVUVAR s finjte
with Free(p) C V. The semantics ap wrt. V is a series[¢]y, € K(DAG(XY,C)Y,
given as follows: ifD = (V,{<i/}eec, (A, p)) € DAG(XY,C) is not valid, we set
[¢]v(D) = 0. Otherwise[¢]y (D) is determined inductively as shown in Table 1.
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[kl (D) = [or v wz]]v@) = 1w (D) & [ (D)

[A(z) = alv (D) = {g gtr)l\éf\fvfgcl: o1 A @2]v(D) = [p1]v(D) o [l (D)
[« < ylv(D) = {g (o) <0 1) [3- ] ( @) g%[[w]]v (Dla/u]])
N - B - G

[elv(D) = {g 1 eb() =0 VX ol(D VIC[VMV DIX/V))

Table 1. The semantics of wWMSO-formulas

We abbreviat§e] pr. () by [¢]. ForK being the 2-valued Boolean algetiza= {0, 1},
WMSO(B, (X, C)) reduces to the usual MSO logic. Accordingly, C DAG(Z, C)
is FO-definableif its support is definable in F@®, (¥, C)), i.e., in the fragment of
WMSO(B, (£, C)) in which no second-order quantifier occurs. We say that thiesse
S € K(DAG(X, C))) is anFO-definable step functioifi S = @, ki o1y, for some
n € N, k; € K, and FO-definable languagés. We cally € wMSO(K, (X, C))
restrictedif it contains no universal second-order quantification,dmdany subformula
V.1 of , [¢] is an FO-definable step function. We denote the set of réstrigMSO-
formulas ovel and(X, C') by WRMSQK, (X, C')). Finally, let WREMSQK, (X, C))
be theexistentialfragment of WRMSQK, (£, C)), which contains the formulas of the
form 3X; ...3X,,.¢ where the kernel formulg € WRMSO(K, (£, C)) contains no
second-order quantifiér.

Even for words, wMSO has to be restricted because, otherdegmability exceeds
recognizability. While, in their logic, Droste and Gastifj fleal withrecognizablestep
functions exploiting the notion of determinism for finitetamnata, we have to cope with
FO-definablgunctions in the context of dags. Fortunately, we can shaamlriguity of
1, for FO-definablel,, which is a cornerstone in establishing a logical char&aagon
of WACATS.

Theorem 4.1. Any FO-definable set céff, C)-dags is unambiguously recognizable.

Proof (Sketch)lt is well-known that any first-order formula can be writtea the
Boolean combination of statements “the pattétroccurs at least times”. Here,P
is meant to be the (isomorphism type of the) environment adderbounded by some
radiusR € IN, also called amR?-sphere. In [2], an ACATAr over dags detects the-
environment of any node. To transform the formula into anvedent ACAT, we need

51t is not trivial to rewrite every wWRMSO-formula into a wWREMSformula. The problem is

that it is not clear if for an FO-definable languabéas used in an FO-definable step function)
the characteristic serids, is again wFO-definable (see also the discussion in Section 6)

10
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to equipAg with a (deterministic) threshold counting procedure tortcwow often a
sphere is used in a run. Howevely, from [2] is not unambiguous due to some coloring
of spheres that is not unique. Such a coloring can be perfibtmambiguously so that
any first-order formula can be simulated by an unambiguou&TAC O

Corollary 4.1. {D € DAG(XY,C) | D valid} is unambiguously recognizable.

Proof. It suffices to show FO-definability. In fact, it is easy to pide an FO formula
requiring that, for any first-order variable there is exactly one node whose labeling is
1 in the component that correspondsito O

Example 4.1.Consider the rinZ = (Z,+, -,0, 1) and the class of lossy message se-
guence charts withlg = {1, 2}, cf. Example 2.2. Then the formula

v = (FxAx)=112) vV (3y. — 1 A Xy) = 271)

defines a seriep] which maps every lossy MS®! to the number of messages from
processl to 2 that are lost.

The remainder of this paper is dedicated to the proof of ouniteeorem:

Theorem 4.2. Let K be a commutative semiring arfle K(DAG(X, C))). Then, the
following are equivalent:

1. Sis recognizable,
2. S is wWRMSO-definable, and
3. S is WREMSO-definable.

5 Definable Series are Recognizable

In this section we show that series defined by restricted ditasnare recognizable. Due
to Corollary 4.1 and Propositions 3.1 and 3.3, we can restriealid (X, C')-dags.
By the closure properties of WACATSs as stated in Propositi®d and 3.2, we get:

Proposition 5.1. Lety, 1) € wMSO(K, (£, C)).

(a) If ¢ is atomic or the negation of an atomic formula, tHep] is recognizable.
(b) If[¢] and[ v ] are recognizable, thefip Vv ¢ ] and[ ¢ A 1] are recognizable.
(c) If [¢] is recognizable, thefidx.o ] and[3X.¢ ] are recognizable.

Proposition 5.2. Let o € wMSO(K, (¥,C)) with [¢] = I, k; o 11, an FO-
definable step function. Thefiyx.¢ | is recognizable.

Proof (Sketch)Let W = free(¢) andV = free(Vz.p) = W \ {z}. Furthermore,
le] =>0 kilp, with k; € KandL; C DAG(XY, C') FO-definable languages for
i1 =1,...,n. By Theorem 4.1, every,; is recognized by an unambiguous ACAT. FO-
definable languages are closed under union, complemennrgéction. Therefore,
{L; | i =1,...,n} can be assumed being a partitionDAG(X"V, C) with k; # k;

11
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for i # j. First, letx € W. We putI” = ¥ x {1,...,n} and conside(I", C)-
dagsD = (V,{<t}icc, (N o, p))with A : V — £, 0 : V — {1,...,n}, andp :
V — {0,1}V. Let L C DAG(I'Y,C) such that, for anyD € L, anyv € V, and any
i€ {l,...,n},wehave(oc(v) = i) <= (V,{<ticc, (A p[z/v])) € L;. Note that
plz/v] : V — {0, 1}V,

Since thel; are FO-definable, one can build an FO—formﬁldefiningE (we omit
the details). Asp is an FO-formula, the Ianguag§ = L(p) is recognizable by an
unambiguous ACATA = (Q,A,T,F) by Theorem 4.1. Let = (g, (a, 04, pt),q) €
Trans v o (Q) With a € X, o1 € {1,...,n}, andp, € {0,1}V. We transform4 =
(Q,A,T,F) into a WACAT A = (Q, , T,~) by adding weights as follows: sge{t)
to bek; if t € Aando; = i. Otherwise(t) = 0. Moreover,y(qi, ..., qay) = 1if

(q1,---,914g)) € F,andy(qu,-..,qa44) = 0 otherwise. Sinced is unambiguous and
recognizes., the weight of an extended dag € L in Ais [],-,, kI’ @' and for
D ¢ L we have(|| A||, D) = 0. Now we consider the projectidn: DAG(I"Y, C') —
DAG(XY,C) mappiingﬂs = (VA<uihiec, (A, 0,p)) 0D = (V. {<u}icc, (A, p)). Note
that forD € DAG(XY, C) there is a uniqu® € L with h(D) = D. Hence, we have

(h(AD.D) = @  (I41.D) = (J4I.D) = J] # @

Deh—1(D)NL 1<i<n
= [1 (T, (D, ple/o])) = ([V2],D).
veV

By Proposition 3.2] Vz.¢ ] is recognizable. The case¢ W is derived easily. O
By Propositions 5.1 and 5.2, we have immediately:

Theorem 5.1. Let K be a commutative semiring and I§te K(DAG(X,C)). If S'is
WRMSO-definable, thesiis also recognizable.

6 Recognizable Series are Definable

For S € K(DAG(X,C))), let SupgS) = {D € DAG(X,C) | (S, D) # 0}. We adopt
the notion of arunambiguousO(K, (X, C'))-formula [7]:

— All atomic formulas apart front and their negations are unambiguous.

— If ¢ andt are unambiguous, then so are\ ¢, Vz.p, andv.X.p.

— If p andy are unambiguous and Sufip]) N Supd[v]) = O, theny Vv ¢ is
unambiguous.

— If, finally, ¢ is unambiguous and, for arffp, p) with p : V- — {0, 1}7¢¢(¥) there
is at most one vertex of D such tha{] pree(pyuiay (D, plr/u]) # O, thenIz.p
is unambiguous.

Observe that, though, syntactically, we deal with ordingi$O formulas, an unam-
biguous formula is primarily a weighted formula, as unarobigsness is defined in
terms of its series. Lep € FO(K, (X, C)). If ¢ is unambiguous, thefiy] is an FO-
definable step function. We know from [7] that certain simfademulas can be made
unambiguous:

12
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Proposition 6.1 ([7]). Letp € FO(K, (E,C)) be a (positive) Boolean combination
of atomic formulas apart fronk and their negations. Then, there is an unambiguous
formulaep™ € FO(K, (X, C)) such thaffpo™] = [¢].

Proof. We proceed by induction and simultaneously define formytasand . If
¢ € FO(K, (X, C)) is atomic or the negation of an atomic formula, wegét=  and
@~ = —p (Where—— is reduced ta)). Moreover, we let

- (pAY)T =9t Ayt O

In the context of words and an (E)MSO logic that employs thejmate< instead
of the direct successor relation, Droste and Gastin negdnsform an ordinary MSO
formulay into an unambiguous weighted MSO formyasuch that],’] is the char-
acteristic series of the language ©f[7]. To this aim, they identify the unique least
position of a word (wrt.<) that satisfies a given property. In our logic, such an iden-
tification is no longer feasible. Nevertheless, we can faans any wACAT into an
equivalent weighted formula.

Theorem 6.1. Let.4 be a WACAT over commutati¥eand (X, C). There is a sentence
¥ fromwREMSQK, (X, C)) such that[y)] = || A||.

Proof. Let A = (Q, u, T, ) be a wACAT overK and(i (). In the following,t andt’

will range overTrans 5 o (Q). SetX to be a collectiori X;) of second-order variables

and supposelg = {1,...,N} for someN € IN. The construction of a WREMSO

sentence fromA4 follows the route of transforming a finite automaton into anfala

where an interpretation of second-order variables reflattassignment of vertices to

transitions. We first provide some building blocks of theicdeswREMSO formula.
The unambiguous formula

Partition(X) := Va. \/(z € Xe A \\ —~(z € Xy))
t t/#t

claims thatX actually represents a run, i.e., an assignment of verticgansitions.
Givena € XY andq € Q, cpE;’q)(x) (@@’q)(x)) shall denote the disjunction (con-
junction) of formulasz € X; (—(z € X;)) such that = (g, a, q) for someg, respec-
tively.
Now lett = {((a1,¢1),41),---, ((@m,qm), bm)} — (a,q). TO ensure that is
contained inX; only if the transition taken at corresponds té, we use

— N +
Trans(z,X):= z€ Xy AXNz)=aA /\ Jy. [y g, T A gp(ak'qk)(y)}

ke{l,....m}
/\Vy.[/\ﬁ(yQZ.r)v \/ (y<ukz/\)\(y)=ak)}+.
leC ke{l,...,m}
13
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Another difficulty is to determine the weight of a global firsthteg with respect
to an extended dag. We would like to identify, for any agemt Ag with g[i] # o,
the X;-maximal node. For this purpose, we demand the unique upscoded set of
nodesY that contains a single minimal elemensuch thatr is the only node executed
by agenti. Then,z is X;-maximal and shall be contained X, for some transition
t =9 — (a,q[i]). Therefore, we define mak:,Y)

+
max;(z,Y) : [\//\ a] ANzeY
a€X;

+
AVy.Vz. {—'(y cY)Va(y<z)Vze Y]

Ay ey) v A ~Ow)
acX;

AYY. (=01 V (1 A w2) V (o1 A =02 A w3))

wherep; = (y € Y), g2 = (y = 2), andps = Jz.(z € Y A [V, pesxc (2 ey A
A(z) = a)]T). Hereby, the last conjunct ensures unambiguity of shax") by requir-
ing thatz is theonly minimal event inY".

To collect the weights of global final states, we require doyg € (Q U 1)), a
formula Finak(X,Y1,...,Yy) :=

N 3z [max2 z,Y;) (\/ o) )T AN Vo \ ~(A@) =a).

i€Ag acy i€Ag acX;
qlileQ qli]=

To simulate the type functiofl, we make use of the unambiguous formula Type :=
+
Voo N [aa@V (ho@ A A Bneacy Adm) =b)]
(a,q)eXXQ (b,£)eT (a,q)
We are now prepared to specify the desired formul&lamely, setting

&'(X) =3, ... V.
Partition X) A /\Va (z € X,;)VTrans(z, X))

A /\ (EIx.ma)g(x,Yi)) \Y Vm.(ﬂ(x eYi)A /\ -(A(z) = a))

i€Ag aey;
A /\Vz —(z € Xo) V ((z € X¢) A pu(t)))

AType(X) A \/ (Final(X. i, i) A5(@)

geF

we finally lety = 3X.4) € WREMS(X[K,@, (). Observe that the subformula
—(x € X3) V ((z € Xy) A u(t)) of ¢ is an FO-definable step function.

Infact, foranyD = (V, {<i;}scc, A) € DAG(XE, C), we have[y)] (D) = (|| Al[, D).
Thus, we obtairfy] = || A||. O

14
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